skip to main content


Search for: All records

Creators/Authors contains: "Kochanek, Christopher S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present JWST MIRI 5.6, 10, and 21μm observations of the candidate failed supernova N6946-BH1 along with Hubble Space Telescope (HST) WFPC/IR 1.1 and 1.6μm data and ongoing optical monitoring data with the Large Binocular Telescope. There is a very red, dusty source at the location of the candidate, which has only ∼10%–15% of the luminosity of the progenitor star. The source is very faint in the HST near-IR observations (∼103L) and is not optically variable to a limit of ∼103Lat theRband. The dust is likely silicate and probably has to be dominated by very large grains, as predicted for dust formed in a failed supernova. The required visual optical depths are modest, so it should begin to significantly brighten in the near-IR over the next few years.

     
    more » « less
  2. ABSTRACT

    The scaling of the specific Type Ia supernova (SN Ia) rate with host galaxy stellar mass $\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$ as measured in ASAS-SN and DES strongly suggests that the number of SNe Ia produced by a stellar population depends inversely on its metallicity. We estimate the strength of the required metallicity dependence by combining the average star formation histories (SFHs) of galaxies as a function of their stellar mass with the mass–metallicity relation (MZR) for galaxies and common parametrizations for the SN Ia delay-time distribution. The differences in SFHs can account for only ∼30 per cent of the increase in the specific SN Ia rate between stellar masses of M⋆ = 1010 and 107.2 M⊙. We find that an additional metallicity dependence of approximately ∼Z−0.5 is required to explain the observed scaling. This scaling matches the metallicity dependence of the close binary fraction observed in APOGEE, suggesting that the enhanced SN Ia rate in low-mass galaxies can be explained by a combination of their more extended SFHs and a higher binary fraction due to their lower metallicities. Due to the shape of the MZR, only galaxies below M⋆ ≈ 3 × 109 M⊙ are significantly affected by the metallicity-dependent SN Ia rates. The $\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$ scaling becomes shallower with increasing redshift, dropping by factor of ∼2 at 107.2 M⊙ between z = 0 and 1 with our ∼Z−0.5 scaling. With metallicity-independent rates, this decrease is a factor of ∼3. We discuss the implications of metallicity-dependent SN Ia rates for one-zone models of galactic chemical evolution.

     
    more » « less
  3. ABSTRACT

    We used Transiting Exoplanet Survey Satellite (TESS) data to identify 29 candidate active galactic nuclei (AGNs) through their optical variability. The high-cadence, high-precision TESS light curves present an opportunity for the identification of AGNs, including those not selected through other methods. Of the candidates, we found that 18 have either previously been identified as AGNs in the literature or could have been selected based on emission-line diagnostics, mid-IR colours, or X-ray luminosity. AGNs in low-mass galaxies offer a unique window into supermassive black hole and galaxy co-evolution and 8 of the 29 candidates have estimated black hole masses ≲ 106 M⊙. The low-mass galaxies NGC 4395 and NGC 4449 are two of our five ‘high-confidence’ candidates. Since our initial sample largely draws from just nine TESS sectors, we expect to identify at least ∼45 more candidates in the TESS primary and extended mission data sets, of which ∼60 per cent will be new AGNs and ∼20 per cent will be in low-mass galaxies.

     
    more » « less
  4. Abstract

    ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253−G003 that undergoes periodic flares. Optical flares were first observed in 2014 by the All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are well-modeled with a period of115.21.2+1.3days and period derivative of −0.0026 ± 0.0006. Here we present ASAS-SN, Chandra, HST/STIS, NICER, Swift, and TESS data for the flares that occurred on 2020 December, 2021 April, 2021 July, and 2021 November. These four flares represent flares 18–21 of the total number of flares observed by ASAS-SN so far since 2014. The HST/STIS UV spectra evolve from blueshifted broad absorption features to redshifted broad emission features over ∼10 days. The Swift UV/optical light curves peaked as predicted by the timing model, but the peak UV luminosities that varied between flares and the UV flux in Flare 20 were roughly half the brightness of the other peaks. The X-ray luminosities consistently decreased and the spectra became harder during the UV/optical rise, but apparently without changes in absorption. Finally, two high-cadence TESS light curves from Flare 18 and Flare 12 showed that the slopes during the rising and declining phases changed over time, which indicates some stochasticity in the flare’s driving mechanism. Although ASASSN-14ko remains observationally consistent with a repeating partial tidal disruption event, these rich multi-wavelength data are in need of a detailed theoretical model.

     
    more » « less
  5. Abstract

    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  6. ABSTRACT

    We analyse high-cadence data from the Transiting Exoplanet Survey Satellite (TESS) of the ambiguous nuclear transient (ANT) ASASSN-18el. The optical changing-look phenomenon in ASASSN-18el has been argued to be due to either a drastic change in the accretion rate of the existing active galactic nucleus (AGN) or the result of a tidal disruption event (TDE). Throughout the TESS observations, short-time-scale stochastic variability is seen, consistent with an AGN. We are able to fit the TESS light curve with a damped-random-walk (DRW) model and recover a rest-frame variability amplitude of $\hat{\sigma } = 0.93 \pm 0.02$ mJy and a rest-frame time-scale of $\tau _{DRW} = 20^{+15}_{-6}$ d. We find that the estimated τDRW for ASASSN-18el is broadly consistent with an apparent relationship between the DRW time-scale and central supermassive black hole mass. The large-amplitude stochastic variability of ASASSN-18el, particularly during late stages of the flare, suggests that the origin of this ANT is likely due to extreme AGN activity rather than a TDE.

     
    more » « less
  7. Abstract

    We present a spectroscopic analysis of 44 low-luminosity host galaxies of Type Ia supernovae (SNe Ia) detected by the All-Sky Automated Survey for Supernovae (ASAS-SN), using hydrogen, oxygen, and sulfur emission lines to measure metallicities and star formation rates. We find no statistically significant evidence that the star formation activity and metallicities of the galaxies in our sample are inconsistent with galaxies of similar luminosities and masses. We identify two 3σoutlier galaxies that have high metallicities for their stellar masses, but find that their other properties are consistent with general galaxies. The overall consistency between our sample and general galaxy samples further strengthens the evidence from more luminous SN Ia host galaxy samples that SN Ia host galaxies are typical.

     
    more » « less
  8. Abstract In recent years, many Type IIn supernovae have been found to share striking similarities with the peculiar SN 2009ip, whose true nature is still under debate. Here, we present 10 yr of observations of SN 2011fh, an interacting transient with spectroscopic and photometric similarities to SN 2009ip. SN 2011fh had an M r ∼ −16 mag brightening event, followed by a brighter M r ∼ −18 mag luminous outburst in 2011 August. The spectra of SN 2011fh are dominated by narrow to intermediate Balmer emission lines throughout its evolution, with P Cygni profiles indicating fast-moving material at ∼6400 km s −1 . HST/WFC3 observations from 2016 October revealed a bright source with M F814W ≈ −13.3 mag, indicating that we are seeing the ongoing interaction of the ejecta with the circumstellar material or that the star might be going through an eruptive phase five years after the luminous outburst of 2011. Using HST photometry of the stellar cluster around SN 2011fh, we estimated an age of ∼4.5 Myr for the progenitor, which implies a stellar mass of ∼60 M ⊙ , using single-star evolution models, or a mass range of 35–80 M ⊙ , considering a binary system. We also show that the progenitor of SN 2011fh exceeded the classical Eddington limit by a large factor in the months preceding the luminous outburst of 2011, suggesting strong super-Eddington winds as a possible mechanism for the observed mass loss. These findings favor an energetic outburst in a young and massive star, possibly a luminous blue variable. 
    more » « less
  9. ABSTRACT We present results from a resolved stellar population search for dwarf satellite galaxies of six nearby (D < 5 Mpc), sub-Milky Way mass hosts using deep (m ∼ 27 mag) optical imaging from the Large Binocular Telescope. We perform image simulations to quantify our detection efficiency for dwarfs over a large range in luminosity and size, and develop a fast catalogue-based emulator that includes a treatment of unresolved photometric blending. We discover no new dwarf satellites, but we recover two previously known dwarfs (DDO 113 and LV J1228+4358) with MV < −12 that lie in our survey volume. We preview a new theoretical framework to predict satellite luminosity functions using analytical probability distribution functions and apply it to our sample, finding that we predict one fewer classical dwarf and one more faint dwarf (MV ∼ −7.5) than we find in our observational sample (i.e. the observational sample is slightly top-heavy). However, the overall number of dwarfs in the observational sample (2) is in good agreement with the theoretical expectations. Interestingly, DDO 113 shows signs of environmental quenching and LV J1228+4358 is tidally disrupting, suggesting that low-mass hosts may affect their satellites more severely than previously believed. 
    more » « less
  10. Abstract

    Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies withg< 14 mag and Sloan Digital Sky Survey spectra in search of AGN. We find 37 objects that are both variable and have AGN-like structure functions, which is about 3% of the sample. The majority of the variability selected AGN are LLAGN with Eddington ratios ranging from 10−4to 10−2. We thus estimate the fraction of LLAGN in the population of galaxies as 2% down to a median Eddington ratio of 2 × 10−3. Combining the BPT line ratio AGN diagnostics and the broad-line AGN, up to ∼60% of the AGN candidates are confirmed spectroscopically. The BPT diagnostics also classified 10%–30% of the candidates as star-forming galaxies rather than AGN.

     
    more » « less